Stylos BA

Bioactive Glass Matrix

Moldable. Absorbent. Irrigation Resistant. Synergistic Effect An enhanced bone graft substitute composed of 45S5 bioactive glass, carbonate apatite anorganic bone mineral, and Type I collagen. A combination that drives a synergistic effect to induce osteoblasts proliferation, matrix maturation, and extracellular matrix mineralization.1 Bioactive Glass 30% Bioactive Glass Promotes Cell Proliferation & Differentiation.2 100-300µm Particle Size.3,4,5 Carbonate Apatite Optimal resorption & remodeling—similar to human bone.6,7 Pores provide pathways for cell migration and attachment to lay down new bone. Higher osteoclastic & osteoblastic activity than BTCP & HA.8 Type 1 Collagen Highly absorbent, moldable, flexible, and resists migration upon irrigation. Binds proteins and cells and retains biological factors.9 100% resorbable through normal metabolic pathways.10 Intrinsic hemostatic properties control minor bleeding.10,11 1 Ferreira, S.A., Young, G., Jones, J.R., Rankin, S. 2021. Bioglass/ Carbonate Apatite/ Collagen Composite Scaffold Dissolution Products Promote Human Osteoblast Differentiation. Materials Science & Engineering C, 118. 2 Xynos, I.D., Hukkanen, M.V., Batten, J.J., Buttery, L.D.K, Hench, L.L., Polak, J.M. (2000). Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro: Implications and applications for bone tissue engineering. Calcif Tissue Int. 67(4), 321-9. 3 Oonishi, H., Kushitani, S., Yasukawa, E., Iwaki, H., Hench, L.L., Wilson, J., Tsuji, E., Sugihara, T. (1997). Particulate Bioglass Compared With Hydroxyapatite as a Bone Graft Substitute. Clinical OrthoPaedics and Related Research, 334, 316-325, Lippincott-Raven Publishers, Philadelphia, PA. 4 Schepers, E.J.G., Ducheyne, P. (1997). Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1-24 month experiment. 5 Lindfors, N. C., Koski, I., Heikkila, J. T., Mattila, K. and Aho, A. J. (2010), A prospective randomized 14-year follow-up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J. Biomed. Mater. Res., 94B, 157-164. doi:10.1002/jbm.b.31636 6 Matsuura, A., Kubo, T., Doi K., Hayashi, K., Morita, K., Yokota, R., Hayashi, H., Hirata, I., Okazaki, M., Akagawa, Y. (2009). Bone formation ability of carbonate. 7 Ellies, LG., Carter, J.M., Natiella, J.R., Featherstone, J.D.B., Nelson, D.G.A. (1988). Quantitative analysis of early in vivo tissue response to synthetic apatite implants. J. of Biomed. Mater. Res., 22, 137-148. 8 Kanayama, K., Sriarj, W., Shimokawa, H., Ohya, K., Doi, Y., Shibutani, T. 2011. Osteoclast and Osteblast Activities on Carbonate Apatite Plates in Cell Cultures. J. Biomaterials, 26, 435-436. 9 Geiger, M., Li, R.H., Friess, W. (2003). Collagen sponges for bone regeneration with rhBMP-2. Science Direct / Elsevier, 55, 1613-1629. 10 Li, S.T. (2000). Biomedical Engineering Handbook, In JD Bronzino (Eds.), Biologic Biomaterials: Tissue Derived Biomaterials (Collagen) (1st ed.) 2, 42, 1-23, CRC Press, Boca Raton, FL. 11 Jaffe, R., Deykin, D. (1974). Evidence for a Structural Requirement for the Aggregation of Platelets by Collagen. The Journal of Clinical Investigation, 53, 875-883.​


Access Systems
Disc Prep

3115 Melrose Drive, Suite 200

Carlsbad, CA 92010

©2022 Spinal Elements, Inc. All rights reserved